Scientists are studying the brains of athletes in search of “brain-training techniques that will enable the rest of us to develop elite-level mental agility”:
In a series of studies starting in 2009, [researcher Martin] Paulus and his colleagues put hardened Marines, elite adventure racers, and regular Joes through various cognitive tasks while monitoring their brain activity in real time with an fMRI scanner. To provide an “aversive stimulus”—a scaled-down version of the stress they’d experience when coming under enemy fire or taking a wrong turn during a multi-day race—the researchers occasionally interfered with subjects’ breathing, restricting airflow to masks they were wearing.
The subjects knew the sensation was coming but not always when. Some members of the control group panicked and had to be removed from the scanner, but the Marines and the adventure racers handled the scenario with ease. In the fMRI scanner, they showed higher activation in the insular cortex immediately before the restricted breathing started. They had, essentially, prepared themselves for the unpleasant sensation. Then, while it was happening, the same region of the brain showed lower activity and carried on with business as usual. “That kind of anticipation and preparation is critical,” Paulus says. The goal, then, is to train your brain to anticipate, and not overreact, to unexpected stress. …
For now, the most promising technique is one that’s already familiar to many professional athletes:
meditation. Paulus’s latest study put 30 Marine recruits through a program in mindfulness, an approach to self-awareness with roots in Buddhist teachings. “You learn to monitor how your body actually feels while suspending judgment about it,” Paulus explains. In the study, subjects followed an eight-week course that taught simple breathing exercises, sitting and walking meditation, yoga, and techniques like “body scans,” in which they focused awareness on each part of their bodies, progressing from head to toe. Brain scans before and after revealed that the trainees acquired some of the same brain patterns that the Marines and adventure racers had shown in the earlier experiments. More surprising, the changes persisted a year later. The biggest effects were in the MPC [medial prefrontal cortex], which moderates knee-jerk responses to external stimuli.